42982a(42982App金牛网)
温馨提示:这篇文章已超过51天没有更新,请注意相关的内容是否还可用!
42982a可能是相关行业人士都值得关注的知识,在此大海号对42982App金牛网进行详细的介绍,并拓展一些相关的知识分享给大家,希望能够为您带来帮助!
本文目录一览:
EXCEL 数值排序问题。急急急!!!
选中你要排序的数据(包括数据的信息都要选,例如学生的成绩排名:姓名,班级,科目,成绩要全部选中)单击菜单栏的“数据——排序”选择升序或降序就行了。

求20道七年级不等式或不等式租车组应用题
一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量? (2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×85%
28a+1600-20a≥2040
8a≥440
a≥55
A型店面至少55间
设月租费为y元
y=75%a×400+90%(80-a)×360
=300a+25920-324a
=25920-24a
很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元
二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:
1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;
4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
问题:
1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);
2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?
解:1、水面年租金=500元
苗种费用=75x4+15x20=300+300=600元
饲养费=525x4+85x20=2100+1700=3800元
成本=500+600+3800=4900元
收益1400x4+160x20=5600+3200=8800元
利润(每亩的年利润)=8800-4900=3900元
2、设租a亩水面,贷款为4900a-25000元
那么收益为8800a
成本=4900a≤25000+25000
4900a≤50000
a≤50000/4900≈10.20亩
利润=3900a-(4900a-25000)×10%
3900a-(4900a-25000)×10%=36600
3900a-490a+2500=36600
3410a=34100
所以a=10亩
贷款(4900x10-25000)=49000-25000=24000元
三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
解:设还需要B型车a辆,由题意得
20×5+15a≥300
15a≥200
a≥40/3
解得a≥13又1/3 .
由于a是车的数量,应为正整数,所以x的最小值为14.
答:至少需要14台B型车.
四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?
解:设甲场应至少处理垃圾a小时
550a+(700-55a)÷45×495≤7370
550a+(700-55a)×11≤7370
550a+7700-605a≤7370
330≤55a
a≥6
甲场应至少处理垃圾6小时
五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?
解:设有宿舍a间,则女生人数为5a+5人
根据题意
a0(1)
05a+535(2)
05a+5-[8(a-2)]8(3)
由(2)得
-55a30
-1a6
由(3)
05a+5-8a+168
-21-3a-13
13/3a7
由此我们确定a的取值范围
4又1/3a6
a为正整数,所以a=5
那么就是有5间宿舍,女生有5×5+5=30人
六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
20万元=200000元
设至少销售b部
利润=1500×20%=300元
根据题意
300b≥200000
b≥2000/3≈667部
至少生产这种手机667部。
七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表:
型号 占地面积(平方米/个) 使用农户数(户/个) 造价(万元/个)
A 15 18 2
B 20 30 3
已知可供建造的沼气池占地面积不超过365平方米,该村共有492户.
(1).满足条件的方法有几种?写出解答过程.
(2).通过计算判断哪种建造方案最省钱?
解: (1) 设建造A型沼气池 x 个,则建造B 型沼气池(20-x )个
18x+30(20-x) ≥492
18x+600-30x≥492
12x≤108
x≤9
15x+20(20-x)≤365
15x+400-20x≤365
5x≥35
x≤7
解得:7≤ x ≤ 9
∵ x为整数 ∴ x = 7,8 ,9 ,∴满足条件的方案有三种.
(2)设建造A型沼气池 x 个时,总费用为y万元,则:
y = 2x + 3( 20-x) = -x+ 60
∵-1 0,∴y 随x 增大而减小,
当x=9 时,y的值最小,此时y= 51( 万元 )
∴此时方案为:建造A型沼气池9个,建造B型沼气池11个
解法②:由(1)知共有三种方案,其费用分别为:
方案一: 建造A型沼气池7个, 建造B型沼气池13个,
总费用为:7×2 + 13×3 = 53( 万元 )
方案二: 建造A型沼气池8个, 建造B型沼气池12个,
总费用为:8×2 + 12×3 = 52( 万元 )
方案三: 建造A型沼气池9个, 建造B型沼气池11个,
总费用为:9×2 + 11×3 = 51( 万元 )
∴方案三最省钱.
八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少个?
解:设学生有a人
根据题意
3a+8-5(a-1)3(1)
3a+8-5(a-1)0(2)
由(1)
3a+8-5a+53
2a10
a5
由(2)
3a+8-5a+50
2a13
a6.5
那么a的取值范围为5a6.5
那么a=6
有6个学生,书有3×6+8=26本
九、某水产品市场管理部门规划建造面积为2400m²的集贸大棚。大棚内设A种类型和B种类型的店面共80间。每间A种类型的店面的平均面积为28m²月租费为400元;每间B种类型的店面的平均面积为20m²月租费为360元。全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%。试确定有几种建造A,B两种类型店面的方案。
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×80%(1)
28a+20(80-a)≤2400×85%(2)
由(1)
28a+1600-20a≥1920
8a≥320
a≥40
由(2)
28a+1600-20a≤2040
8a≤440
a≤55
40≤a≤55
方案: A B
40 40
41 39
……
55 25
一共是55-40+1=16种方案
十、某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款。某单位需购买5张桌子和若干把椅子(不少于10把)。如果已知要购买X把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?
设需要买x(x≥10)把椅子,需要花费的总前数为y
第一种方案:
y=300x5+60×(x-10)=1500+60x-600=900+60x
第二种方案:
y=(300x5+60x)×87.5%=1312.5+52.5x
若两种方案花钱数相等时
900+60x=1312.5+52.5x
7.5x=412.5
x=55
当买55把椅子时,两种方案花钱数相等
大于55把时,选择第二种方案
小于55把时,选择第一种方案
十一、某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题:
甲 乙
A 20G 40G
B 30G 20G
(1)有几种符合题意的生产方案?写出解答过程;
(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?
解:(1)设生产A型饮料需要x瓶,则B型饮料需要100-x瓶
根据题意
20x+30(100-x)≤2800(1)
40x+20(100-x)≤2800(2)
由(1)
20x+3000-30x≤2800
10x≥200
x≥20
由(2)
40x+2000-20x≤2800
20x≤800
x≤40
所以x的取值范围为20≤x≤40
因此方案有
生产 A B
20 80
21 79
……
40 60
一共是40-20+1=21种方案
(2)y=2.6x+2.8×(100-x)=2.6x+280-2.8x=280-0.2x
此时y为一次函数,因为20≤x≤40
那么当x=40时,成本最低,此时成本y=272元
十二、某房地产开发公司计划建造A,B两种户型的单身公寓共80套,A户型每套成本55万元,售价60万元,B户型每套成本58万元,售价64万元,设开发公司建造A户型x套。
(1)根据所给的条件,完成下表
A B
套数 X 80-x
单套利润 5 6
利润 5x 480-6x
若所建房售出后获得的总利润为y万元,请写出y关于x的函数解析式
y=5x+480-6x=480-x
(2)该公司所筹资金不少于4490万元,但不超过4496万元,所筹资金全部用于建房,该公司对这两种户型有哪几种建房方案?哪种方案获得的利润最大?
解:根据题意
55x+58(80-x)≥4490(1)
55x+58(80-x)≤4496(2)
由(1)
55x+4640-58x≥4490
3x≤150
x≤50
由(2)
55x+4640-58x≤4496
3x≥144
x≥48
48≤x≤50
所以建房方案有三套方案:
A型 48 49 50
B型 32 31 30
y=480-x是一次函数,当x=48时,y最大值=480-48=432万元
(3)为了适应市场需要,该公司在总套数不变的情况下,增建若干套C户型,现已知C户型每套成本53万元,售价57万元,并计划把该公司所筹资金为4490万元刚好用完,则当x= 套时,该公司所建房售出后获得的总利润最大。
解:设B型建z套,C型建80-x-z套
55x+58z+53(80-x-z)=4490
55x+58z+4240-53x-53z=4490
2x+5z=250
5z=250-2x
z=50-2/5x
x,z为正整数,且x+z80
50-2/5x+x80
3/5x30
x50
所以x只能是5的倍数
x=5,z=48
x=10.z=46
x=15,z=44
x=20,z=42
……
x=45,z=32
利润y=5x+6(50-2/5x)+4(80-x-50+2/5x)
=5x+300-12/5x+120-12/5x=420+1/5x
当x=45时,y最大值=420-1/5×45=429万
十三、某商场用36000元购进A,B两种产品,销售完后共获利6000元,已知A种商品进价120元、售价138元,B种商品进价120元、加价20%后出售
(1)该商场购进A,B两种商品各多少件;
(2)商场第二次以原价购进A,B两种商品。购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,若两种商品销售完毕,要使第二次经营活动获利不少于8400元,B种商品最低售价为每件多少元?
解:(1)B种商品售价=120×(1+20%)=144元
A种商品利润=138-120=18元
B种商品利润=144-120=24元
一共购进A,B两种商品36000/120=300件
设购进A种商品a件,购进B种商品b件
a+b=300(1)
18a+24b=6000(2)
(2)-(1)×18
6b=6000-5400
6b=600
b=100
a=300-100=200
所以购进A种商品200件,B种商品100件
(2)根据题意
购进B种商品100件,A种商品200×2=400件
A种商品的利润不变,仍为18元
设B种商品销售的最低价为x元
18×400+100(x-120)≥8400
7200+100x-12000≥8400
100x≥13200
x≥132
所以B种商品的售价最低为每件132元
十四、A B车间各有若干名工人生产同一种零件,A车间有一个人每天只生产6件,其余的每人每天生产11件。B车间有一个人每天只生产7件,其余的每人每天生产10件。已知两车间每天生产零件的总数相等,且每个车间每天生产零件总数不少于100件,不超过200件,求A B车间各多少人?
解:设A车间a人,B车间b人
100≤11(a-1)+6≤200(1)
100≤10(b-1)+7≤200(2)
11(a-1)+6=10(b-1)+7(3)
由(3)
11a-11+6=10b-10+7
11a-10b=2
a=(10b+2)/11(4)
由(1)
100≤11a-5≤200
105≤11a≤205
105/11≤a≤205/11
9又5/11≤a≤18又7/11
由(2)
100≤10b-10+7≤200
103≤10b≤203
10.3≤b≤20.3
因为b为正整数,所以b=11,12,13,14,15,16,……,20
代入(4)
只有b=13时,a=12时符合题意
所以A车间2人,B车间13人
十五、某厂有甲种原料360千克 乙种原料290千克 计划利用这两种原料生产AB两种产品共50件,已知生产一件A产品需用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B产品,需甲种原料4千克,乙种原料10千克,可获利润1200元。
(1)按要求安排AB两种产品的生产件数,有几种方案?请你设计出来。
设生产A产品a件,B产品50-a件
9a+4(50-a)≤360(1)
3a+10(50-a)≤290(2)
由(1)
9a+200-4a≤360
5a≤160
a≤32
由(2)
3a+500-10a≤290
7a≥210
a≥30
所以30≤a≤32
一共是3种方案
生产A产品30件,B产品20件
生产A产品31件,B产品19件
生产A产品32件,B产品18件
(2)设生产 AB 两种产品获利润y元 其中一种生产件数 为x 试写出y与x的关系式 并指出中哪种方案获得利润最大 最大利润是多少?
设生产A产品x件
y=700x+1200(50-x)=60000-500x
为一次函数,随着x的减小y增大
所以当x=30时,y最大值=60000-500×30= 45000元
十六、2009年我是某县筹备20周年县庆,园林部门决定涌现有的3490盆甲种花卉和2950盆乙种花卉搭配AB两种园艺造型共50个,摆放在迎宾大道两侧。已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B种造型需甲种花卉50盆,乙种花卉90盆。
(1)某公司承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来。
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,是说明(1)中哪种方案成本最低?最低成本方案是多少元?
解:设需要A种造型a个,那么B种造型50-a个
根据题意
80a+50(50-a)≤3490(1)
40a+90(50-a)≤2950(2)
由(1)
80a+2500-50a≤3490
30a≤990
a≤33
由(2)
40a+4500-90a≤2950
50a≥1550
a≥31
所以a的群之范围31≤a≤33
方案:
A种造型31个,B种造型19个
A种造型32个,B种造型18个
A种造型33个,B种造型17个
(2)
设成本为y元
y=800a+960(50-a)=48000-160a
此为一次函数,y随着a的增大而减小。要求成本最低,那么当a=33时,成本最低,此时成本y=48000-160×33=42720元
十七、一共25道题,要求学生把正确的答案选出来,每道题选对得4分,不选或选错倒扣2分,若果学生在本次竞赛中的得分不低于60分,请问他至少答对了几道题?
解:设答对a道题
根据题意
4a-2×(25-a)≥60
4a-50+2a≥60
6a≥110
a≥55/3=18又1/3
至少答对19道题
十八、一栋4层的大楼,每层楼有8间教室,进出大楼有4道门,其中两道正门,大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以同时560名学生:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门个可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%,安全检查规定,在紧急情况下,全大楼的学生应在5分钟内通过4道门安全撤离。假如这栋教学大楼每间教室最多有45名学生。问:建造的这4道们是否符合安全规定?说明理由
解:设一个正门平均每分钟通过x名学生,一个侧门平均每分钟通过y名学生
1)2x+4y=560
2)4x+4y=800
(2)-(1)
2x=240
x=120
y=200-120=80
解方程组得x=120 y=80
正门每分钟通过120人,侧门每分钟通过80人
第二问
共有最多学生45×8×4=1440人
通过效率实际为1-20%=80%
5分钟最多能过学生(120+80)×2×5×80%=1600
14401600
所以合格,5分钟能全部通过
十九、七年级的同学参加了社会实践活动,到龙山生态果园调查后得到如下的信息:今年收获了15吨李子和8吨桃子,计划用甲、乙两种货车共6辆,将这些水果一次性的全部运往外地,经询问,甲种货车最多可装李子4吨和桃子1吨,乙种货车最多可装李子1吨和桃子3吨,根据同学们带回的信息,试探究以下问题:
(1)共有几种租车方案?
(2)经咨询运输公司,甲种货车每辆需付运费500元,乙种货车每辆需付运费400元,是帮助选出最省钱的运输方案,并求出此方案运费是多少?
解:(1)设用甲车a辆,则乙车用了6-a辆
4a+1×(6-a)≥15(1)
1×a+3×(6-a)≥8(2)
由(1)
4a+6-a≥15
3a≥9
a≥3
由(2)
a+18-3a≥8
2a≤10
a≤5
a的取值范围3≤a≤5
租车方案
甲 3 4 5
乙 3 2 1
一共3种租车方案
(2)设运费为b
b=500a+400(6-a)=2400+100a
为一次函数,当a最小时,b有最小值
a=3时,运费b最省,为2400+100=2500元
二十、为极大的满足人民的生活需求,丰富市场供应,温棚设施农业迅速发展,温棚种植面积在不断扩大,在耕地上培成一行一行的长方形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种,科学研究表明:在塑料温棚中份垄间隔套种高,矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加他们的光合作用,提高单位面积的产量和经济效益,现有一个种植面积为540平方米的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总龙数不低于10垄,又不超过14垄(垄数为正整数),他们的占地面积,产量,利润分布如下:
占地面积(平方米/垄) 产量(千克/垄) 利润(元/千克)
西红柿 30 160 1.1
草莓 15 50 1.6
(1)若设草莓共种植了x垄,通过计算说明共有几种种植方案?分别是哪几种
(2)在这集中种植方案中,那种方案获得的利润最大?最大利润是多少?
(1)设草莓共种植了x垄,则西红柿共种植了24-x垄
根据题意
10≤x≤14(1)
10≤24-x≤14(2)
15x+30(24-x)≤540(3)
由(2)
-14≤-x≤-10
10≤x≤14
由(3)
15x+720-30x≤540
15x≥180
x≥12
所以x的取值范围
12≤x≤14
所以方案有三种
种草莓12垄,西红柿24-12=12垄
种草莓13垄,西红柿24-13=11垄
种草莓14垄,西红柿24-14=10垄
(2)设利润为y元
y=50x×1.6+160(24-x)×1.1=80x+4224-176x=4224-96x
为一次函数,x越小,y最大
所以最大利润y=4224-96×12=3072元
谁能帮我出20道初中不等式题,谢谢!
一、某水产品市场管理部门规划建造面积为2400平方米的大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28平方米,月租费为400元,每间B种类型的店面的平均面积为20平方米,,月租费为360元,全部店面的建造面积不低于大棚总面积的85%。
(1)试确定A种类型店面的数量? (2)该大棚管理部门通过了解,A种类型店面的出租率为75%,B种类型店面的出租率为90%,为使店面的月租费最高,应建造A种类型的店面多少间?
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×85%
28a+1600-20a≥2040
8a≥440
a≥55
A型店面至少55间
设月租费为y元
y=75%a×400+90%(80-a)×360
=300a+25920-324a
=25920-24a
很明显,a≥55,所以当a=55时,可以获得最大月租费为25920-24x55=24600元
二、水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到情况:
1、每亩地水面组建为500元,。
2、每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;
3、每公斤蟹苗的价格为75元,其饲养费用为525元,当年可或1400元收益;
4、每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;
问题:
1、水产养殖的成本包括水面年租金,苗种费用和饲养费用,求每亩水面虾蟹混合养殖的年利润(利润=收益—成本);
2、李大爷现有资金25000元,他准备再向银行贷款不超过25000元,用于蟹虾混合养殖,已知银行贷款的年利率为10%,试问李大爷应租多少亩水面,并向银行贷款多少元,可使年利润达到36600元?
解:1、水面年租金=500元
苗种费用=75x4+15x20=300+300=600元
饲养费=525x4+85x20=2100+1700=3800元
成本=500+600+3800=4900元
收益1400x4+160x20=5600+3200=8800元
利润(每亩的年利润)=8800-4900=3900元
2、设租a亩水面,贷款为4900a-25000元
那么收益为8800a
成本=4900a≤25000+25000
4900a≤50000
a≤50000/4900≈10.20亩
利润=3900a-(4900a-25000)×10%
3900a-(4900a-25000)×10%=36600
3900a-490a+2500=36600
3410a=34100
所以a=10亩
贷款(4900x10-25000)=49000-25000=24000元
三、某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?
解:设还需要B型车a辆,由题意得
20×5+15a≥300
15a≥200
a≥40/3
解得a≥13又1/3 .
由于a是车的数量,应为正整数,所以x的最小值为14.
答:至少需要14台B型车.
四、某城市平均每天产生生活垃圾700吨,全部由甲,乙两个垃圾厂处理,已知甲厂每小时处理垃圾55吨,需费用550元;乙厂每小时处理垃圾45吨,需费用495元。如果规定该城市处理垃圾的费用每天不超过7370元,甲厂每天至少需要处理垃圾多少小时?
解:设甲场应至少处理垃圾a小时
550a+(700-55a)÷45×495≤7370
550a+(700-55a)×11≤7370
550a+7700-605a≤7370
330≤55a
a≥6
甲场应至少处理垃圾6小时
五、学校将若干间宿舍分配给七年级一班的女生住宿,已知该班女生少于35人,若每个房间住5人,则剩下5人没处可住;若每个房间住8人,则空出一间房,并且还有一间房也不满。有多少间宿舍,多少名女生?
解:设有宿舍a间,则女生人数为5a+5人
根据题意
a0(1)
05a+535(2)
05a+5-[8(a-2)]8(3)
由(2)得
-55a30
-1a6
由(3)
05a+5-8a+168
-21-3a-13
13/3a7
由此我们确定a的取值范围
4又1/3a6
a为正整数,所以a=5
那么就是有5间宿舍,女生有5×5+5=30人
六、某手机生产厂家根据其产品在市场上的销售情况,决定对原来以每部2000元出售的一款彩屏手机进行调价,并按新单价的八折优惠出售,结果每部手机仍可获得实际销售价的20%的利润(利润=销售价—成本价).已知该款手机每部成本价是原销售单价的60%。
(1)求调整后这款彩屏手机的新单价是每部多少元?让利后的实际销售价是每部多少元?
解:手机原来的售价=2000元/部
每部手机的成本=2000×60%=1200元
设每部手机的新单价为a元
a×80%-1200=a×80%×20%
0.8a-1200=0.16a
0.64a=1200
a=1875元
让利后的实际销售价是每部1875×80%=1500元
(2)为使今年按新单价让利销售的利润不低于20万元,今年至少应销售这款彩屏手机多少部?
20万元=200000元
设至少销售b部
利润=1500×20%=300元
根据题意
300b≥200000
b≥2000/3≈667部
至少生产这种手机667部。
七、我市某村计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号的沼气池的占地面积,使用农户数以及造价如下表:
型号 占地面积(平方米/个) 使用农户数(户/个) 造价(万元/个)
A 15 18 2
B 20 30 3
已知可供建造的沼气池占地面积不超过365平方米,该村共有492户.
(1).满足条件的方法有几种?写出解答过程.
(2).通过计算判断哪种建造方案最省钱?
解: (1) 设建造A型沼气池 x 个,则建造B 型沼气池(20-x )个
18x+30(20-x) ≥492
18x+600-30x≥492
12x≤108
x≤9
15x+20(20-x)≤365
15x+400-20x≤365
5x≥35
x≤7
解得:7≤ x ≤ 9
∵ x为整数 ∴ x = 7,8 ,9 ,∴满足条件的方案有三种.
(2)设建造A型沼气池 x 个时,总费用为y万元,则:
y = 2x + 3( 20-x) = -x+ 60
∵-1 0,∴y 随x 增大而减小,
当x=9 时,y的值最小,此时y= 51( 万元 )
∴此时方案为:建造A型沼气池9个,建造B型沼气池11个
解法②:由(1)知共有三种方案,其费用分别为:
方案一: 建造A型沼气池7个, 建造B型沼气池13个,
总费用为:7×2 + 13×3 = 53( 万元 )
方案二: 建造A型沼气池8个, 建造B型沼气池12个,
总费用为:8×2 + 12×3 = 52( 万元 )
方案三: 建造A型沼气池9个, 建造B型沼气池11个,
总费用为:9×2 + 11×3 = 51( 万元 )
∴方案三最省钱.
八、把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少个?
解:设学生有a人
根据题意
3a+8-5(a-1)3(1)
3a+8-5(a-1)0(2)
由(1)
3a+8-5a+53
2a10
a5
由(2)
3a+8-5a+50
2a13
a6.5
那么a的取值范围为5a6.5
那么a=6
有6个学生,书有3×6+8=26本
九、某水产品市场管理部门规划建造面积为2400m²的集贸大棚。大棚内设A种类型和B种类型的店面共80间。每间A种类型的店面的平均面积为28m²月租费为400元;每间B种类型的店面的平均面积为20m²月租费为360元。全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%。试确定有几种建造A,B两种类型店面的方案。
解:设A种类型店面为a间,B种为80-a间
根据题意
28a+20(80-a)≥2400×80%(1)
28a+20(80-a)≤2400×85%(2)
由(1)
28a+1600-20a≥1920
8a≥320
a≥40
由(2)
28a+1600-20a≤2040
8a≤440
a≤55
40≤a≤55
方案: A B
40 40
41 39
……
55 25
一共是55-40+1=16种方案
十、某家具店出售桌子和椅子,单价分别为300元一张和60元一把,该家具店制定了两种优惠方案:(1)买一张桌子赠送两把椅子;(2)按总价的87.5%付款。某单位需购买5张桌子和若干把椅子(不少于10把)。如果已知要购买X把椅子,讨论该单位购买同样多的椅子时,选择哪一种方案更省钱?
设需要买x(x≥10)把椅子,需要花费的总前数为y
第一种方案:
y=300x5+60×(x-10)=1500+60x-600=900+60x
第二种方案:
y=(300x5+60x)×87.5%=1312.5+52.5x
若两种方案花钱数相等时
900+60x=1312.5+52.5x
7.5x=412.5
x=55
当买55把椅子时,两种方案花钱数相等
大于55把时,选择第二种方案
小于55把时,选择第一种方案
十一、某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题:
甲 乙
A 20G 40G
B 30G 20G
(1)有几种符合题意的生产方案?写出解答过程;
(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?
解:(1)设生产A型饮料需要x瓶,则B型饮料需要100-x瓶
根据题意
20x+30(100-x)≤2800(1)
40x+20(100-x)≤2800(2)
由(1)
20x+3000-30x≤2800
10x≥200
x≥20
由(2)
40x+2000-20x≤2800
20x≤800
x≤40
所以x的取值范围为20≤x≤40
因此方案有
生产 A B
20 80
21 79
……
40 60
一共是40-20+1=21种方案
(2)y=2.6x+2.8×(100-x)=2.6x+280-2.8x=280-0.2x
此时y为一次函数,因为20≤x≤40
那么当x=40时,成本最低,此时成本y=272元
十二、某房地产开发公司计划建造A,B两种户型的单身公寓共80套,A户型每套成本55万元,售价60万元,B户型每套成本58万元,售价64万元,设开发公司建造A户型x套。
(1)根据所给的条件,完成下表
A B
套数 X 80-x
单套利润 5 6
利润 5x 480-6x
若所建房售出后获得的总利润为y万元,请写出y关于x的函数解析式
y=5x+480-6x=480-x
(2)该公司所筹资金不少于4490万元,但不超过4496万元,所筹资金全部用于建房,该公司对这两种户型有哪几种建房方案?哪种方案获得的利润最大?
解:根据题意
55x+58(80-x)≥4490(1)
55x+58(80-x)≤4496(2)
由(1)
55x+4640-58x≥4490
3x≤150
x≤50
由(2)
55x+4640-58x≤4496
3x≥144
x≥48
48≤x≤50
所以建房方案有三套方案:
A型 48 49 50
B型 32 31 30
y=480-x是一次函数,当x=48时,y最大值=480-48=432万元
(3)为了适应市场需要,该公司在总套数不变的情况下,增建若干套C户型,现已知C户型每套成本53万元,售价57万元,并计划把该公司所筹资金为4490万元刚好用完,则当x= 套时,该公司所建房售出后获得的总利润最大。
解:设B型建z套,C型建80-x-z套
55x+58z+53(80-x-z)=4490
55x+58z+4240-53x-53z=4490
2x+5z=250
5z=250-2x
z=50-2/5x
x,z为正整数,且x+z80
50-2/5x+x80
3/5x30
x50
所以x只能是5的倍数
x=5,z=48
x=10.z=46
x=15,z=44
x=20,z=42
……
x=45,z=32
利润y=5x+6(50-2/5x)+4(80-x-50+2/5x)
=5x+300-12/5x+120-12/5x=420+1/5x
当x=45时,y最大值=420-1/5×45=429万
十三、某商场用36000元购进A,B两种产品,销售完后共获利6000元,已知A种商品进价120元、售价138元,B种商品进价120元、加价20%后出售
(1)该商场购进A,B两种商品各多少件;
(2)商场第二次以原价购进A,B两种商品。购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,若两种商品销售完毕,要使第二次经营活动获利不少于8400元,B种商品最低售价为每件多少元?
解:(1)B种商品售价=120×(1+20%)=144元
A种商品利润=138-120=18元
B种商品利润=144-120=24元
一共购进A,B两种商品36000/120=300件
设购进A种商品a件,购进B种商品b件
a+b=300(1)
18a+24b=6000(2)
(2)-(1)×18
6b=6000-5400
6b=600
b=100
a=300-100=200
所以购进A种商品200件,B种商品100件
(2)根据题意
购进B种商品100件,A种商品200×2=400件
A种商品的利润不变,仍为18元
设B种商品销售的最低价为x元
18×400+100(x-120)≥8400
7200+100x-12000≥8400
100x≥13200
x≥132
所以B种商品的售价最低为每件132元
十四、A B车间各有若干名工人生产同一种零件,A车间有一个人每天只生产6件,其余的每人每天生产11件。B车间有一个人每天只生产7件,其余的每人每天生产10件。已知两车间每天生产零件的总数相等,且每个车间每天生产零件总数不少于100件,不超过200件,求A B车间各多少人?
解:设A车间a人,B车间b人
100≤11(a-1)+6≤200(1)
100≤10(b-1)+7≤200(2)
11(a-1)+6=10(b-1)+7(3)
由(3)
11a-11+6=10b-10+7
11a-10b=2
a=(10b+2)/11(4)
由(1)
100≤11a-5≤200
105≤11a≤205
105/11≤a≤205/11
9又5/11≤a≤18又7/11
由(2)
100≤10b-10+7≤200
103≤10b≤203
10.3≤b≤20.3
因为b为正整数,所以b=11,12,13,14,15,16,……,20
代入(4)
只有b=13时,a=12时符合题意
所以A车间2人,B车间13人
十五、某厂有甲种原料360千克 乙种原料290千克 计划利用这两种原料生产AB两种产品共50件,已知生产一件A产品需用甲种原料9千克,乙种原料3千克,可获利润700元;生产一件B产品,需甲种原料4千克,乙种原料10千克,可获利润1200元。
(1)按要求安排AB两种产品的生产件数,有几种方案?请你设计出来。
设生产A产品a件,B产品50-a件
9a+4(50-a)≤360(1)
3a+10(50-a)≤290(2)
由(1)
9a+200-4a≤360
5a≤160
a≤32
由(2)
3a+500-10a≤290
7a≥210
a≥30
所以30≤a≤32
一共是3种方案
生产A产品30件,B产品20件
生产A产品31件,B产品19件
生产A产品32件,B产品18件
(2)设生产 AB 两种产品获利润y元 其中一种生产件数 为x 试写出y与x的关系式 并指出中哪种方案获得利润最大 最大利润是多少?
设生产A产品x件
y=700x+1200(50-x)=60000-500x
为一次函数,随着x的减小y增大
所以当x=30时,y最大值=60000-500×30= 45000元
十六、2009年我是某县筹备20周年县庆,园林部门决定涌现有的3490盆甲种花卉和2950盆乙种花卉搭配AB两种园艺造型共50个,摆放在迎宾大道两侧。已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆;搭配一个B种造型需甲种花卉50盆,乙种花卉90盆。
(1)某公司承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来。
(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,是说明(1)中哪种方案成本最低?最低成本方案是多少元?
解:设需要A种造型a个,那么B种造型50-a个
根据题意
80a+50(50-a)≤3490(1)
40a+90(50-a)≤2950(2)
由(1)
80a+2500-50a≤3490
30a≤990
a≤33
由(2)
40a+4500-90a≤2950
50a≥1550
a≥31
所以a的群之范围31≤a≤33
方案:
A种造型31个,B种造型19个
A种造型32个,B种造型18个
A种造型33个,B种造型17个
(2)
设成本为y元
y=800a+960(50-a)=48000-160a
此为一次函数,y随着a的增大而减小。要求成本最低,那么当a=33时,成本最低,此时成本y=48000-160×33=42720元
十七、一共25道题,要求学生把正确的答案选出来,每道题选对得4分,不选或选错倒扣2分,若果学生在本次竞赛中的得分不低于60分,请问他至少答对了几道题?
解:设答对a道题
根据题意
4a-2×(25-a)≥60
4a-50+2a≥60
6a≥110
a≥55/3=18又1/3
至少答对19道题
十八、一栋4层的大楼,每层楼有8间教室,进出大楼有4道门,其中两道正门,大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一道正门和两道侧门时,2分钟内可以同时560名学生:当同时开启一道正门和一道侧门时,4分钟内可以通过800名学生。
(1)求平均每分钟一道正门和一道侧门个可以通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%,安全检查规定,在紧急情况下,全大楼的学生应在5分钟内通过4道门安全撤离。假如这栋教学大楼每间教室最多有45名学生。问:建造的这4道们是否符合安全规定?说明理由
解:设一个正门平均每分钟通过x名学生,一个侧门平均每分钟通过y名学生
1)2x+4y=560
2)4x+4y=800
(2)-(1)
2x=240
x=120
y=200-120=80
解方程组得x=120 y=80
正门每分钟通过120人,侧门每分钟通过80人
第二问
共有最多学生45×8×4=1440人
通过效率实际为1-20%=80%
5分钟最多能过学生(120+80)×2×5×80%=1600
14401600
所以合格,5分钟能全部通过
十九、七年级的同学参加了社会实践活动,到龙山生态果园调查后得到如下的信息:今年收获了15吨李子和8吨桃子,计划用甲、乙两种货车共6辆,将这些水果一次性的全部运往外地,经询问,甲种货车最多可装李子4吨和桃子1吨,乙种货车最多可装李子1吨和桃子3吨,根据同学们带回的信息,试探究以下问题:
(1)共有几种租车方案?
(2)经咨询运输公司,甲种货车每辆需付运费500元,乙种货车每辆需付运费400元,是帮助选出最省钱的运输方案,并求出此方案运费是多少?
解:(1)设用甲车a辆,则乙车用了6-a辆
4a+1×(6-a)≥15(1)
1×a+3×(6-a)≥8(2)
由(1)
4a+6-a≥15
3a≥9
a≥3
由(2)
a+18-3a≥8
2a≤10
a≤5
a的取值范围3≤a≤5
租车方案
甲 3 4 5
乙 3 2 1
一共3种租车方案
(2)设运费为b
b=500a+400(6-a)=2400+100a
为一次函数,当a最小时,b有最小值
a=3时,运费b最省,为2400+100=2500元
二十、为极大的满足人民的生活需求,丰富市场供应,温棚设施农业迅速发展,温棚种植面积在不断扩大,在耕地上培成一行一行的长方形土埂,按顺序间隔种植不同农作物的方法叫分垄间隔套种,科学研究表明:在塑料温棚中份垄间隔套种高,矮不同的蔬菜和水果(同一种紧挨在一起种植不超过两垄),可增加他们的光合作用,提高单位面积的产量和经济效益,现有一个种植面积为540平方米的长方形塑料温棚,分垄间隔套种草莓和西红柿共24垄,种植的草莓或西红柿单种农作物的总龙数不低于10垄,又不超过14垄(垄数为正整数),他们的占地面积,产量,利润分布如下:
占地面积(平方米/垄) 产量(千克/垄) 利润(元/千克)
西红柿 30 160 1.1
草莓 15 50 1.6
(1)若设草莓共种植了x垄,通过计算说明共有几种种植方案?分别是哪几种
(2)在这集中种植方案中,那种方案获得的利润最大?最大利润是多少?
(1)设草莓共种植了x垄,则西红柿共种植了24-x垄
根据题意
10≤x≤14(1)
10≤24-x≤14(2)
15x+30(24-x)≤540(3)
由(2)
-14≤-x≤-10
10≤x≤14
由(3)
15x+720-30x≤540
15x≥180
x≥12
所以x的取值范围
12≤x≤14
所以方案有三种
种草莓12垄,西红柿24-12=12垄
种草莓13垄,西红柿24-13=11垄
种草莓14垄,西红柿24-14=10垄
(2)设利润为y元
y=50x×1.6+160(24-x)×1.1=80x+4224-176x=4224-96x
为一次函数,x越小,y最大
所以最大利润y=4224-96×12=3072元
名侦探柯南
强力推荐:
剧场版,特别篇,
本厅刑事恋爱物语 系列
危命的复活 系列
名侦探柯南-421.银杏色的初恋(前篇)
名侦探柯南-422 银杏色的初恋(后篇)
名侦探柯南-OVA4:基德与水晶之母
*名侦探柯南-452.金刀比罗座的怪人
OVA1:柯南vs基德vs阿剑 宝刀争夺大决战
OVA2:十六人的嫌疑者
OVA3:柯南与平次与消失的少年
名侦探柯南-437.上户彩与新一 4年前的约定
*名侦探柯南-174.二十年后的杀机 圣佛尼号连续杀人事件
名侦探柯南-81.当红歌星绑架事件(前篇)
名侦探柯南-82.当红歌星绑架事件(后篇)
*名侦探柯南-96.走头无路的名侦探!连续两大杀人事件
名侦探柯南-100.初恋情人回忆事件(前篇)
名侦探柯南-101.初恋情人回忆事件(后篇)
名侦探柯南-128.黑暗组织10亿抢劫事件
*名侦探柯南-129. 来自黑暗组织的女子 大学教授杀人事件
名侦探柯南-132.魔术爱好者杀人事件(事件篇)
名侦探柯南-133.魔术爱好者杀人事件(疑惑篇)
名侦探柯南-134.魔术爱好者杀人事件(解决篇)
名侦探柯南-136.蓝色古堡搜索事件(前篇)
名侦探柯南-137.蓝色古堡搜索事件(后篇)
名侦探柯南-144.上野出发的北斗星3号(前篇)
名侦探柯南-145.上野出发的北斗星3号(后篇)
名侦探柯南-297.法庭的对决II 妃VS九条(上集)
名侦探柯南-298.法庭的对决II 妃VS九条(下集)
*名侦探柯南-304.震动的警视厅!1200万人质
名侦探柯南-309.与黑暗组织的再会(交涉篇)
名侦探柯南-310.与黑暗组织的再会(追踪篇)
名侦探柯南-311.与黑暗组织的再会(决死篇)
名侦探柯南-321.被绑架的江户川柯南(前篇)
名侦探柯南-322.被绑架的江户川柯南(后篇)
名侦探柯南-323.服部平次一筹莫展(前篇)
名侦探柯南-324.服部平次一筹莫展(后篇)
名侦探柯南-289.迷茫森林中的光彦(前篇)
名侦探柯南-290.迷茫森林中的光彦(后篇)
名侦探柯南-196.看不见的凶器.小兰的初次推理
名侦探柯南-199.嫌疑犯˙毛利小五郎(前篇)
名侦探柯南-200.嫌疑犯˙毛利小五郎(后篇)
名侦探柯南-201.第10个乘客(前篇)
名侦探柯南-202.第10个乘客(后篇)
名侦探柯南-203.伊卡尔斯的黑色之翼(前篇)
名侦探柯南-204.伊卡尔斯的黑色之翼(后篇)
名侦探柯南-153.园子的夏日海滩冒险物语(前篇)
名侦探柯南-154.园子的夏日海滩冒险物语(后篇)
名侦探柯南-156.本厅刑事的恋爱物语2(前篇)
名侦探柯南-157.本厅刑事的恋爱物语2(后篇)
*名侦探柯南-162.飞机空中密室!工藤新一的首次的办案
名侦探柯南-163.月亮、星星与太阳的秘密(前篇)
名侦探柯南-164.月亮、星星与太阳的秘密(后篇)
名侦探柯南-165.少年侦探队消失事件
还有
名侦探柯南-1. 凌宵飞车杀人事件
*名侦探柯南-11.钢琴奏鸣曲「月光」杀人事件(前篇)
名侦探柯南-11.钢琴奏鸣曲「月光」杀人事件(后篇)
名侦探柯南-27.小五郎同学会杀人事件(前篇)
名侦探柯南-28.小五郎同学会杀人事件(后篇)
名侦探柯南-34.山庄绷带怪人杀人事件(前篇)
名侦探柯南-35.山庄绷带怪人杀人事件(后篇)
名侦探柯南-43.江户川柯南被绑事件
名侦探柯南-48.外交官杀人事件(前篇)
名侦探柯南-49.外交官杀人事件(后篇)
名侦探柯南-57.福尔摩斯˙诡异的杀人事件(前篇)
名侦探柯南-58.福尔摩斯˙诡异的杀人事件(后篇)
名侦探柯南-61.幽灵船杀人事件(前篇)
名侦探柯南-62.幽灵船杀人事件(后篇)
名侦探柯南-68.黑夜的怪男爵杀人事件(事件篇)
名侦探柯南-69.黑夜的怪男爵杀人事件(疑惑篇)
名侦探柯南-70.黑夜的怪男爵杀人事件(解决篇)
*名侦探柯南-76.柯南 vs 怪盗KID(前篇)
名侦探柯南-76.柯南 vs 怪盗KID(后篇)
名侦探柯南-81.当红歌星绑架事件(前篇)
名侦探柯南-82.当红歌星绑架事件(后篇)
*名侦探柯南-96.走头无路的名侦探!连续两大杀人事件
名侦探柯南-100.初恋情人回忆事件(前篇)
名侦探柯南-101.初恋情人回忆事件(后篇)
名侦探柯南-128.黑暗组织10亿抢劫事件
*名侦探柯南-129. 来自黑暗组织的女子 大学教授杀人事件
名侦探柯南-132.魔术爱好者杀人事件(事件篇)
名侦探柯南-133.魔术爱好者杀人事件(疑惑篇)
名侦探柯南-134.魔术爱好者杀人事件(解决篇)
名侦探柯南-136.蓝色古堡搜索事件(前篇)
名侦探柯南-137.蓝色古堡搜索事件(后篇)
名侦探柯南-144.上野出发的北斗星3号(前篇)
名侦探柯南-145.上野出发的北斗星3号(后篇)
名侦探柯南-146.本厅刑事的恋爱物语(前篇)
名侦探柯南-147.本厅刑事的恋爱物语(后篇)
名侦探柯南-153.园子的夏日海滩冒险物语(前篇)
名侦探柯南-154.园子的夏日海滩冒险物语(后篇)
名侦探柯南-156.本厅刑事的恋爱物语2(前篇)
名侦探柯南-157.本厅刑事的恋爱物语2(后篇)
*名侦探柯南-162.飞机空中密室!工藤新一的首次的办案
名侦探柯南-163.月亮、星星与太阳的秘密(前篇)
名侦探柯南-164.月亮、星星与太阳的秘密(后篇)
名侦探柯南-165.少年侦探队消失事件
名侦探柯南-166.鸟取县蜘蛛公馆的怪事(事件篇)
名侦探柯南-167.鸟取县蜘蛛公馆的怪事(疑惑篇)
名侦探柯南-168.鸟取县蜘蛛公馆的怪事(解决篇)
名侦探柯南-169.维纳斯之吻
名侦探柯南-172.复活的死亡讯息(前篇)
名侦探柯南-173.复活的死亡讯息(后篇)
*名侦探柯南-174.二十年后的杀机 圣佛尼号连续杀人事件
名侦探柯南-175.被杀了四次的男人
名侦探柯南-176.与黑暗组织的再会(灰原篇)
名侦探柯南-177.与黑暗组织的再会(柯南篇)
名侦探柯南-178.与黑暗组织的再会(解决篇)
*名侦探柯南-184.诅咒面具的冷笑
名侦探柯南-185.被狙击的名侦探(前篇)
名侦探柯南-186.被狙击的名侦探(后篇)
名侦探柯南-187.在黑暗中传出的神秘枪声
名侦探柯南-188.危命的复活 洞窟内的侦探团
名侦探柯南-189.危命的复活 负伤之下的名侦探
名侦探柯南-190.危命的复活 第三个选择
名侦探柯南-191.危命的复活 黑衣骑士
名侦探柯南-192.危命的复活 新一回来了
名侦探柯南-193.危命的复活 约定的场所
名侦探柯南-196.看不见的凶器.小兰的初次推理
名侦探柯南-199.嫌疑犯˙毛利小五郎(前篇)
名侦探柯南-200.嫌疑犯˙毛利小五郎(后篇)
名侦探柯南-201.第10个乘客(前篇)
名侦探柯南-202.第10个乘客(后篇)
名侦探柯南-203.伊卡尔斯的黑色之翼(前篇)
名侦探柯南-204.伊卡尔斯的黑色之翼(后篇)
*名侦探柯南-208.朝向迷宫的入口.巨神像之怒
名侦探柯南-212.松菇、熊和侦探团(前篇)
名侦探柯南-289.迷茫森林中的光彦(前篇)
名侦探柯南-290.迷茫森林中的光彦(后篇)
名侦探柯南-294.爱与决断的破碎(前编)
名侦探柯南-295.爱与决断的破碎(后编)
名侦探柯南-296.屋形船 震惊的钓鱼
名侦探柯南-297.法庭的对决II 妃VS九条(上集)
名侦探柯南-298.法庭的对决II 妃VS九条(下集)
名侦探柯南-303.能回来的受害者
*名侦探柯南-304.震动的警视厅!1200万人质
名侦探柯南-309.与黑暗组织的再会(交涉篇)
名侦探柯南-310.与黑暗组织的再会(追踪篇)
名侦探柯南-311.与黑暗组织的再会(决死篇)
名侦探柯南-321.被绑架的江户川柯南(前篇)
名侦探柯南-322.被绑架的江户川柯南(后篇)
名侦探柯南-323.服部平次一筹莫展(前篇)
名侦探柯南-324.服部平次一筹莫展(后篇)
名侦探柯南-325.火焰中的赤兔马(事件篇)
名侦探柯南-326.火焰中的赤兔马(搜查篇)
名侦探柯南-327.火焰中的赤兔马(解决篇)
名侦探柯南-329.被挑拨的友情(前篇)
名侦探柯南-330.被挑拨的友情(后篇)
名侦探柯南-331.疑惑的咖喱饭(前篇)
名侦探柯南-332.疑惑的咖喱饭(后篇)
名侦探柯南-333.像公主的人(前篇)
名侦探柯南-334.像公主的人(后篇)
名侦探柯南-344.便利店的陷阱(后篇)
名侦探柯南-357.恋人是春天的幻觉
名侦探柯南-361.帝丹高中的学校怪谈(前篇)
名侦探柯南-362.帝丹高中的学校怪谈(后篇)
名侦探柯南-381.谁的推理秀(前篇)
名侦探柯南-382.谁的推理秀(后篇)
名侦探柯南-385.斯特拉迪瓦里小提琴的不和谐音(前奏曲)
名侦探柯南-386.斯特拉迪瓦里小提琴的不和谐音(间奏曲)
名侦探柯南-387.斯特拉迪瓦里小提琴的不和谐音(后奏曲)
名侦探柯南-421.银杏色的初恋(前篇)
名侦探柯南-422 银杏色的初恋(后篇)
名侦探柯南-431.本厅刑事恋爱物语7(前篇)
名侦探柯南-432.本厅刑事恋爱物语7(后篇)
名侦探柯南-433.奇怪的孩子
名侦探柯南-435.注目于侦探团的采访(前篇)
名侦探柯南-436.注目于侦探团的采访(后篇)
名侦探柯南-437.上户彩与新一 4年前的约定
名侦探柯南-440.极限的汽车特技
*名侦探柯南-449.本厅刑事恋爱物语8 伪装的婚礼
名侦探柯南-450.诡计VS魔术(前篇)
名侦探柯南-451.诡计VS魔术(后篇)
*名侦探柯南-452.金刀比罗座的怪人
OVA1:柯南vs基德vs阿剑 宝刀争夺大决战
OVA2:十六人的嫌疑者
OVA3:柯南与平次与消失的少年
OVA4:基德与水晶之母
OVA6:追踪消失的钻石 柯南 平次VS基德
还有 基德在空中漫步一小时特别篇
这个没有找到观看地址就算了吧 对不起!
知道种子特征码后如何用迅雷下载该种子文件?
1、首先,我们需要进入迅雷,记住只有在主页才有这个按钮。
2、然后点击上方的那个“下载按钮”。
3、这里是我们创建的任务的地方,我们点击“加号”。
4、这里就有新建BT任务,就是新建我们的种子文件的任务了。
5、首先进入的时候手动添加,大家可以手动找到自己种子文件存在的目录。
6、如果大家不知道自己的种子文件放在哪个位置的话, 可以点击自动扫描,之后大家耐心等待就可以了。
7、自动扫描出我们的种子文件之后,大家就可以点击下载了。
