高压直流接触器节能板(高压直流接触器生产厂家排行)
温馨提示:这篇文章已超过78天没有更新,请注意相关的内容是否还可用!
最近有很多小伙伴咨询关于高压直流接触器节能板的问题,小编结合多年的经验整理出来一些高压直流接触器生产厂家排行对应的资料,分享给大家。
本文目录一览:
- 1、EV200HAANA高压接触器主要起什么作用?
- 2、高压直流接触器主要用于哪些设备?
- 3、交流接触器的节能技术
- 4、直流接触器分高压和低压吗
- 5、泰科高压接触器EV200AAANA,电流500A,电压9-36V,是不是没有辅助触点?
- 6、普通交流接触器和交流节能型接触器线圈分别属于什么类型的线圈,有什么特点
EV200HAANA高压接触器主要起什么作用?
高压直流接触器EV200HAANA广泛应用于电源部分:
1、车辆及火炮控制单元装甲车,火炮和坦克,两栖车辆,补给车,推土车,自卸卡车,起重机和服务设备
2、航空、航天、太空站配电设备及地面牵引车
3、海舰/船只及水下设备(DC电源)
4、混合动力车辆-卡车,大巴,轨道车辆电源隔断,辅助电源连接,柴油加热器以及DC连接
5、新能源-太阳能,燃料电池,风能,超级电容
6、采矿设备及建筑车辆-驱动和控制系统
7、发电-地面电源机组焊接器电信
8、运输-火车,公交车,长途汽车

高压直流接触器主要用于哪些设备?
直流接触器,和交流接触器相似,说的简单一点,接触器就是开关。之所以不用普通开关,是因为接触器可以灭弧。
直流接触器是用在直流回路中的一种接触器,与交流接触器对应,其一般也有主触点、辅助触点和线圈触点。
交流接触器的节能技术
交流接触器广泛应用于低压电路中,是一种使用安全、控制方便、量大而面广的工业必需品。我国现在普遍使用的额定电流在63A及以上的大、中容量交流接触器应以上亿台计,其操作电磁系统在吸持时消耗的有功功率在10W~100W之间;消耗的无功功率则在数十乏尔至数百乏尔之间。所耗有功功率的分配大致为:铁芯65%~75%、短路环25%~30%、线圈3%~5%。对于我国这样一个正处于工业化、城市化进程加快的交流接触器使用大国,且能源需求日趋紧张,节约电力资源已成为当务之急。
如对上述交流接触器的操作电磁系统采用相应的节电技术,将其操作电磁系统由原设计的交流吸持改为直流吸持,可以节省铁芯和短路环中绝大部分的损耗功率,从而取得较高的节电效率(一般有功节电率90%以上)。不仅如此,通过改造还可降低或消除噪音,降低线圈温升并延长接触器的使用寿命。 为了适应能源结构调整需要,我国在原有GB 8871-----1998《交流接触器节电及其应用技术条件》基础上,对标准重新进行了修订,并颁布GB 8871---2001《交流接触器节电器》。在新标准中,对噪声及噪声试验、节电率及节电率的测量、电磁兼容EMC及试验条款都列入强制执行条款,这无疑对交流接触器节能技术的研究推广起到积极作用。传统型与节电型接触器对比情况如表1所示。
表1传统型与节电型接触器对比 传统型交流接触器 节电型交流接触器 工作方式 通电吸合、带电保持、断电释放 瞬时通电吸合、脉动保护、断电释放 设计
结构 铁芯和短路环中的磁滞损耗占能耗90%以上,噪音大、功率因数低、线圈温升高,降低了接触器线圈的使用寿命。 采用线圈和元件组合结构,改变其交流运行方式为直流吸合,直流保持运行方式,节能平均达85%以上。噪音低(25dB)、功率因数高(COSφ=1)、线圈温升低,使用寿命提高。 吸合
吸持
电压 接触器能够在85% ~110%US的额定电压值吸合;在20%~75%US的额定电压值释放。 动作电压值可调整,改变脉冲直流电路其脉冲宽度,或者调整吸合、吸持线圈阻抗,就可调节高吸动电压值和低吸持电压值,使之调整为所配交流接触器操作电磁系统要求最佳值。 延时
功能 接触器本身常闭辅助触点来完成自动转换延时。缺点占用接触器本身常闭辅助触点。 可应用电子延时转换电路,使由高吸动电压自动转换至低吸持电压,可与所配用交流接触器固有闭合时间相适应。不需要使用交流接触器常闭辅助触点,最主要的是可大大提高交流接触器闭合操作的可靠性。 保护
功能 缺相不吸合,只局限工作相出现缺相状态下 通过电子技术应用使得节电电路中很方便地增加主电路保护功能:如欠压、过压、相序保护以及漏电保护等功能,极大拓展节能接触器的应用。 节能
方面 不节能。而且因为接触器线圈的温升导致接触器使用寿命的下降,增加企业运行成本。 采用低损耗控制电路,直流供电方式将无功损耗变为有功输出,使节能达95%以上,节省大量电力资源,也为用户带来可观的经济效益;采用节电技术,使原接触器使用寿命增加2倍,为企业节省使用接触器的成本。 交流接触器节能方案主要取决于其工作原理及相应的结构工艺。交流接触器内产生电磁吸力Fat由恒定分量F0和交变分量F~组成。其中:
恒定分量: F0 = Fatm / 2 ( Fatm =107 B2 MS /8π )
交变分量: F~ =F0 cos 2ωt 。
在工作中,由于衔铁始终受到反力弹簧、触头弹簧等反作用力 Fr 的作用,电磁吸力平均值 Fat Fr ;当 Fat Fr 时衔铁开始释放,Fat Fr 衔铁又呈吸合状态,如此周而复始,衔铁产生振动并发出噪音。此时铁芯在交变磁化产生的磁滞损耗和涡流损耗会引起铁芯发热(叠加的硅钢片可以起到减少涡流损耗作用)。为降低工作噪音通常在小容量的电磁系统磁轭端部开一小槽嵌入相应的短路环,其作用就是把通过铁芯磁通分为两部分,即不穿过短路环的磁通Φ1和穿过短路环的磁通Φ2 ,且Φ2滞后Φ1 ,使合成吸力始终大于反作用力,从而降低了振动噪音,但也增加了相应铜损。
交流接触器的功率主要由吸持功耗和吸合功耗两部分,虽然线圈在吸合起动瞬间功耗较大,但时间很短(几十 ms );工作时间一直处于吸持保持状态(此时能量损耗主要集中在吸持状态铁损上)。正因如此如能降低交流接触器工作中的吸持功耗就可以达到节能目的,根据此原理,目前节能接触器大致分类如下:
1.节电器
节电器分为:电容式、变压器式、占空比(改变)式。交流接触器与相应节电器配套使用,使接触器在直流状态吸持运行,从而达到节能目的。节电器因交流接触器电磁线圈电磁能以及节电器内部器件限制,一般适用于额定电流60~600A交流接触器,低于60A的交流接触器因其电磁线圈所贮有电磁能在直流运行时不能维持其吸合;大于600A的交流接触器产生的电磁能极易使节电器内部器件损坏。
2.节电线圈
接触器线圈中通过交流电后,会产生相应感抗,感抗的大小影响线圈中电流的大小,交流电磁铁中线圈的感抗,在铁芯未闭合时感抗很小,会通过很大的电流,这也是造成线圈在吸合时功率为最大的原因所在。当交流接触器由吸合转为吸持时,由于处于长期工作状态再加之线圈功耗大,温升也随之上升。通常交流接触器长时间工作可以产生50℃~60℃度高温,夏季时再加上30℃~40℃度环境温度,线圈温度上升更快。线圈长期处于高温工作中,将加快老化甚至烧毁,交流接触器的使用寿命也会缩短。
根据交流接触器线圈功耗大温升快的特点,通过降低功耗和温升以达到节能目的。按内部结构,节电线圈分为:双绕组式、限流电阻式、双绕组自转换式和定位转换式。节电线圈的工作原理通常将在其线圈上采用脉动直流吸持运行方案:吸合绕组一般线径较大,匝数较少,因而阻抗较低,产生的吸合电流大;吸持绕组一般线径较小,匝数较多,阻抗大,故而吸持电流小。增加相应整流器件及压敏电阻和薄膜电容,使交流接触器通电工作处于直流状态,较大的起动电流保证电磁系统的可靠吸合,较小的吸持电流降低了吸持功耗,从而降低了电磁系统的电损耗和线圈温升。 根据交流接触器的结构,增加如节电器、节电线圈、机械锁扣装置,电磁系统改为剩磁(永磁)吸持式等方式,可起到节能效果。传统接触器与节电后节能对比如表2所示。
以传统CJ10、CJ12、CJ20交流接触器为例,对节能前后的耗能数据对比,反映其节能效果。
以CJ20/400A/3计算一年节能情况:接触器节能前正常工作吸持功率为180W,电费单价按平均电费按1元/ Kwh计,工作时间为12h/天:
节能前总耗电:0.18Kw×12h×365 = 788 Kwh
节能后总耗电:0.006Kw×12h×365 = 26 Kwh
节能(年节电量):788Kwh - 26Kwh = 762Kwh
节电费用:762Kwh×1元/Kwh = 762元
目前我国节电型交流接触器已经有一定的市场,但还不够普及,传统型交流接触器目前在用户使用上占主导地位。主要原因是节电型接触器价格较贵,用户在一次性投入上还不能接受,有待于国家在节能型接触器的推广上加大政策力度,促进节能型接触器的广泛应用。
直流接触器分高压和低压吗
无论交流或直流接触器都只有低压的(1KV以下),没有超KV级的高压接触器。
接触器只有很小的灭弧装置,所以其只能断开回路的过负荷电流,不能用于开断回路的故障电流。
目前接触器最大开断电流也只有其额定电流的6倍。
所以,接触器被定义为回路的操作元件,而不是开断元件。对操作元件的要求是能够频繁操作多次而不损坏,所以接触器的操作寿命是30万次。
泰科高压接触器EV200AAANA,电流500A,电压9-36V,是不是没有辅助触点?
高压直流接触器EV200的额定电流在0-500A,额定电压在9-36V,主要应用于新能源汽车;而欧姆龙车载继电器在中国主要采用OEM方式。当汽车继电器的额定电压和电流都在行业标准要求的范围内是可以替换的。具体可参考TE代理商河南盛泰提供的泰科高压继电器简式目录。
普通交流接触器和交流节能型接触器线圈分别属于什么类型的线圈,有什么特点
两者的线圈是一样的,只是节能型接触器增加了一套交直流转换系统,使用直流吸合,因直流吸合不存在抖动,维持电流可以减少。这样便节约了电
